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Viscous tangential stress on the interior wall of a container with a spherical charge, that develops in filtration 

of an incompressible fluid through the charge is investigated. Based on an analysis of an experimental 

dependence of the dimensionless stress on the Reynolds numoer, two critical Reynolds numbers are 

determined: the first number corresponds to the beginning of an abrupt drop in the stress, and the second 

number, to its reaching a regime that is self-similar in velocity. Comparison with the theory permits 

interpretation of the effects of pseudoturbulence and turbulence, respectively. 

Processes that occur in granular media are complex; therefore, many essential details of hydrodynamics 

and transfer remain little studied. The hydrodynamic features of processes in the wall zone directly adjacent to 

the heat-exchange surface have practically not been investigated [ 1 ]. 

We study the properties of the viscous tangential stress on the interior wall of a container with a spherical 

charge that develops with fluid motion through the charge. Elements similar to the studied ones in geometry and 

occurring hydrodynamic processes are widely used in a variety of apparatuses of modern technology: filters, heat 

exchangers, and catalytic chemical reactors. The mechanism of the effect of by-passing of a part of the flow through 

the wall zones in those devices [1 ] is, as is expected, associated with friction properties on the interior walls. The 

obscure causes of the high level of by-passing make it important to study friction properties. 

An experimental study of tangential stress involves great methodological difficulties, by virtue of which the 

number of works on this problem is small. 

In [2 ], stress was determined by an electrodiffusion method as a function of the rate of filtering through 

the charge in the range of the Reynolds numbers of from 0 to 170 (the Reynolds number is constructed from the 

sphere diameter and the filtering rate of the fluid). The fluid is an electrolyte, p = 1000 kg/m 3,/z -- 0.001 kg/m. sec. 

The container is a tube with diameter D -- 13.8 ram; the spheres are of two sizes: d = 1.07 and 3.2 mm. We used 

sensors of the dimensions, much larger and smaller than the diameter of the sphere, that yielded readings, 

coincident within 5%, with good reproducibility in multiple repackings of the charge. 

In [3 ], the friction was found from the slope of the velocity profile near the wall in a cell of cubic packing 

of spheres using a laser Doppler anemometer in the range Re - 800-2900. Measurements are performed at several 

points along and transverse to (at the maximum cross-section) the longitudinal axis of symmetry of the cell. An 

immersion liquid - p = 1300 kg/m 3,/~ = 0.0013 kg/m.sec - was used. The packing is nine spheres of d = 18.3 
mm in a row. 

We represent the data on the tangential stress on the container wall 7, as a function of the rate of liquid 

filtering through the charge Um [2] in dimensionless form: U'(0) = r.d/b~Um versus Re = pUmd/bt (the solid lines 

in Fig. 1). Unlike the dimensional stress, which grows monotonically with the flow rate, the dimensionless stress 

is characterized by a more complex dependence on the number Re. On the experimental curves, we can distinguish 

three characteristic regions: 1-2, 2-3, and 3-4. The first region 1-2 is distinguished by an increase in the stress as 

a function of Re, the second region 2-3 corresponds to an abrupt drop in the observed dimensionless stress on the 

wall with a gradual decrease in the rate of the drop. The beginning of the drop corresponds to point 2 and is a 
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Fig. 1. Dimensionless tangential  stress on a wall U'(0) vs. the Reynolds  

number Re. The solid line is experiment, the dashed line is the theory with 

no allowance made for the contributions of pseudoturbulence and turbulence; 

a) and b) are charge spheres with diameters of 1.07 and 3.2 ram. 

salient point. The  third region 3-4 is distinguished by the self-similarity of stress in the Reynolds number  (it begins 

from point 3). Point  3 cannot  be dis t inguished on the curve as clearly as 2, since the curve degenera tes  

asymptotically into a hozizontal straight line. We determine the position of point 3 in Fig. 1 by the condition of its 

5% deviation from asymptote.  

We determine two critical Reynolds numbers: the first number  corresponds to the beginning of the abrupt  

drop in the frictional stress, and the second one, to the beginning of self-similarity. The  plots show that  flow in 

the charge of larger spheres is characterized by larger first and second critical Re numbers. 

The  data of [3 ] cannot be processed in terms of the filtering rate without averaging the tangential  stress 

over the entire solid wall adjacent to the cell of the packing. The  magnitudes of the stresses turn out to be dependent  

on the position of the measurement point with respect to the cell. The  maximum stress is recorded on the wall in 

the diffuser cross-section on the axis of symmetry  of the cell, and the minimum stress (it is negative), in the sphere 

afterpart,  in the region of return flows. Data on the dimensionless stress as a function of Re were obtained by 

processing the results of [3] and are given in Table 1. Points 1-4 are located along the cell 's axis of symmetry ,  

respectively, in the minimum, diffuser, maximum, and confuser cross-sections of the cell, and points 5-7, on the 

axis that is perpendicular to the axis of symmetry  of the cell in the maximum cross-section with lateral shifts from 

the axis of symmetry  of 3.6 and 9 mm. From the data of Table 1, we can establish that, despite the two- to threefold 

change in the number  Re,  the dimensionless  stress is approximate ly  the same at the character is t ic  points; 

consequently, the average stress will be the same, too. This qualitative result enables us 1o conclude that there 

exists at large Re numbers  self-similarity of the tangential stress with respect to Re in cubic packings of spheres, 

too.  

When an electrodiffusion stress meter was used [2 l, averaging was apparently performed by the device 

itself. 

We move on to a theoretical analysis of the properties of tangential stress on the wall of a container  with 

a spherical charge and an incompressible viscous fluid moving through it. 

An essential factor retarding a theoretical study of the problem is the absence of a universally adopted and 

reliably substantiated closed equation of filtration that enables us to allow for the condition of adhesion on a solid 

wall. We know the Brinkman equation 14 ]: 

d P / d x  = - / ~ / k U  + a d X U / d y  2 . (l) 
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TABLE 1. Dimensionless Viscous Tangential Stress on a Wall U' (0) as a Function of the Number Re for Different 

Points of Measuring in a Wall Cell of a Cubic Packing of Spheres 

u (o) 
Re 

1 2 3 4 5 6 7 

830 

1670 

2900 

148 

113 

109 

162 

224 

197 

148 

149 

157 

148 

159 

143 

32 

26 

22 

-21 

-21 

-15  

- 1 5  

-18  

-16  

The x axis is directed along the wall downstream; the y axis is perpendicular to the wall and directed into the 

charge; the coordinate origin is located on the wall. Equation (1) enables us to allow for the adhesion condition, 

but it is suitable only for small filtering rates and, furthermore, as has been shown in [1 ], should contain Heft 

rather than/a in the last term of the right-hand side, the estimate for//eft being known only for media with a 

porosity higher than 0.7-0.8. In [5 ], by the method of averaging over the volume, an open equation of filtering that 

is suitable for high filtering rates is obtained: 

dV/ax = +/,a2u/ay 2 - qp: + pd ((axay))/ay. (2) 

The fourth term on the right-hand side of (2) allows for the transverse transfer of momentum by pseudoturbulence: 

by fluctuations of the velocity field of a fluid that moves through an irregular structure. In [6 ], it was proposed to 

also take into account the contribution of turbulence in (2) by a term of the form p d ( u ' v ' ) / d y  on the fight-hand 

side. Allowance for pseudoturbulence and turbulence separately makes sense, since both effects differ in length 

scale: for the first effect, on the order of the grain diameter [7 ]; for the second, much smaller than the pore size 

[8 ]. They also have different causes: the development of turbulence is associated with a loss of dynamic stability 

of flow in charge pores [8 ] while pseudoturbulence is due to macroheterogeneities of the properties and structure 
of the material that affect fluid motion in the pores, bend current lines, and induce fluctuations of the velocity field 

and their related transfer [7 ]. 
We calculate the magnitude of the tangential stress on the wall of the tube containing the charge based on 

Eq. (2) as a more general equation in view of the equalities k = d 2 / a l  and q = a 2 / d ,  where al and a2 are quantities 

dependent only on the porosity of the charge. To simplify the calculations, we take the radius of the tube to be 

infinite. We denote the filtering rate at a sufficient distance from the wall (infinity) as Urn. From the experiments, 

it is known that the wall has an effect on flow in the charge to distances of about several grain diameters and the 

maximum rate on the tube axis is observed only for charges with D / d  < 3.3 [1 ]; therefore, at large depths and 

for not very large spheres, from (3) we obtain 

d P / d x  = - ( a l l a U m / d  2 + a2PU2m/d) ,  (3) 

from which it follows that 

l . t d 2 U / d y  2 + p d / d y  ( (AxAy)  + (u 'v ' ) )  - a l ~ U / d  2 - a 2 p U 2 / d  + 

+ a l H U m / d  2 + a2PU2m/d = O. (4) 

We dedimensionalize (4), taking the grain diameter as the length scale and Um as the rate scale: 

U ~ + Re ((AxAy) + (u 'v ' ) ) '  - a l U  - a 2 Re U 2 + a I + a 2 Re = 0.  (5) 
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Using the identity U" = (U '2 ) ' / (2U '), we rearrange (5) and integrate once between the limits of from 0 to 0,, 

allowing for U '(o,) = 0, U(o,) = 1, U(0) = 0: 

U' (0) = a I + -~ a 2 Re -r 2 Re ((A.rAy) + (u'v'))' U'dy , 
0 

(6) 

Processing the data of [2 ] on the rate of filtering through the charge as a function of the pressure drop 

enabled us to determine the coefficients al - 160(1 - e )2 / t  3 and a2 = 1.75(1 - r  3, in which the porosity e = 

0.375 + 0.78 (d/D2), according to [9 ]; in this case, the deviation of the experimental points from the calculation 

does not exceed 2 - 5 % ,  while the permeabilities agree well with the experimental ones. Let us compare in Fig. 1 

the dependence of U'(0) on Re that is obtained from Eq. (6) with no allowance made for the contribution from the 

integral (dashed curve) with the data of [2] (solid curve). 

In region 1-2 there is complete agreement between the calculated and experimental  curves. At point 2, 

when the number  Re attains its first critical value, the curves disagree sharply: the theoretical curve keeps on 

growing as Re 1/2 while the experimental  one begins to drop. 

Usually in filtration theory, disagreements of this kind are explained either by increased permeability near  

the wall [ 1 ] or by the influence of the deviation of the resistance law from a linear one for the charge [2 ]. Let us 

show that both these factors in the given case cannot account for the deviation observed. 

The  decrease in the wall stress cannot be explained by a direct influence of the increase in the permeabili ty 

near  the wall. Indeed,  let the permeability be increased near  the wall and be characterized by the law a l ( l  - / ( y ) ) ,  

in which f(y) is an arbi t rary function decreasing monotonically to zero at infinity. Substituting it into (5), af ter  

rearrangements we obtain in view o f f ( y )  < 0 on the r ight-hand side of (6) the additional term (-al  ? U2fdy) > O, 
o 

i.e., the stress can only grow. 

The  beginning of the drop in the frictional stress on the wall is associated with the appearance of the 

quadrat ic- in-veloci ty  component  of the resis tance in the equation of fil tration only  to the ex ten t  that  both 

phenomena are quadratic in velocity. Indeed,  at tainment by the ratio of the magnitudes of the quadratic and linear 

components in (3) of a preset limit, for example, the number const = (a~oU2m/d)/(alpUm/d 2) = R e / ( 1  - e), can 

be considered as the beginning of the deviation of the resistance law. It is found that the lower the porosity of the 

charge, the larger the characteristic number  Re = const(l  - e) of the beginning of the deviation of the resistance 

law from a linear one. The dependence of the first critical Re number  on porosity, as the plot shows, is inverse: 

for a charge with 3.2 mm spheres, ~ ffi 0.407, Re = 12-13 ;  for 1.07 mm spheres, e = 0.380, Re = 3 - 4 ,  i.e., the 

higher the porosity and, correspondingly, the straighter the pore channel,  the larger the first critical Re number.  

The rate of the drop in the tangential stress as a function of Re after  the first critical number  also turns out to be 

higher for a denser  charge. 

According to Eq. (6), the disagreement between the experimental  and calculated curves is due to neglect 

of the influence of the integral term and the effects of pseudoturbulence and turbulence. The  influence of turbulence 

cannot induce the observed drop in the friction in the range after the first critical Reynolds number for two reasons. 

First, according to the data of visualization and anemometry,  pulsations over the entire cross section of the charge 

appear for Re > 34 [1 ], and it is only for Re > 100-120  [8, 10] that turbulent t ransfer  becomes significant. 

Second, from experiments [8] it is known that turbulence in the charge enhances the processes of mixing and 

transverse momentum transfer,  increases the curvature of the velocity profile near the wall, and should necessarily 

lead to growth in the tangential stress. These  facts enable us to uniquely interpret the effect of the drop in the 

tangential stress on the wall as a result of transverse pseudoturbulence momentum transfer  being involved in the 

process. In the charges that are characterized by more-crooked pore channels (lower porosity),  it is natural  to 

expect a higher level of pseudoturbulence and, in accordance with the experiments,  an earlier onset of and a more 

abrupt drop in the stress. As the region of high Reynolds numbers is approached the turbulence that enhances 

mixing and  f r ic t ion  begins to g radua l ly  get involved in the process  of t r ansve r se  m o m e n t u m  exchange .  

Pseudoturbulence and turbulence mechanisms begin to compete, tending to decrease and to increase, respectively, 
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the wall friction. This leads to a gradual slowing down of the rate of the drop in the dimensionless tangential stress 

and its reaching a regime that is self-similar in Re for Re > 100-120 for both dimensions of the spheres, which 

correlates with data [8, 10 ] on the beginning of a developed turbulent regime of filtration. According to Fig. 1, the 

second critical Reynolds number is 100 for 1.07 mm spheres and 120 for 3.2 mm spheres. 

The existence of a region of self-similarity of tangential stress 3-4 has been established experimentally up 

to Re = 170; however, taking into account the data of Table 1, this region can turn out to be much wider. 

The experimentally observed drop in the dimensionless stress on the wall that coincides in the geometry 

of the given problem with the first derivative of velocity with respect to the transverse coordinate should lead, for 

a constant filtering rate away from the wall, to a significant widening of the region occupied by the boundary layer. 
This phenomenon is indeed observed when the effect of by-passing of the liquid through wall parts of the charge 

is experimentally studied. The experiments are usually performed in the range after the first critical Reynolds 

number and it turns out that the width of the region of by-passing attains 3 - 5 d  [1 ]. This is an abnormally large 
width to be explained only by a near-wall increase in porosity or perme.,bility. 

The obtained results point to the necessity of allowance for the influence of pseudoturbulence and 

turbulence in studying transfer processes in charges near heat exchange surfaces. 

The practical significance of the present work consists in establishing and determining the magnitude of 

two critical Reynolds numbers based on analysis of an experimental dependence of the dimensionless stress on the 

Reynolds number. The first number corresponds to the beginning of an abrupt drop in the stress, and the second 

number, to its reaching a regime that is self-similar in velocity. In the range up to the first critical number Re, the 

Brinkman equation can be used for calculating the tangential stress on the wall, while for higher Re numbers, 

equations such as (2) and (4) can be used. 

N O T A T I O N  

x, longitudinal coordinate; y, transverse coordinate; P, pressure; p, density; p, ,tteff, coefficient and effective 

coefficient of dynamic viscosity of liquid; d, sphere diameter; D, tube diameter; U, filtering rate; Urn, rate of filtering 
away from a wall; Re, Reynolds number; r.,  viscous tangential stress on wall; U'(0), dimensionless stress; k, 

permeability; e, porosity of charge; al, a2, q, constants; (AxAy), (u'v'), pseudoturbulent and turbulent components 

of transverse momentum transfer. 
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